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A B S T R A C T   

Chronic lower lumbar pain has been associated with elevated bone metabolic activity in the spine. Diagnosis of 
bone metabolic activity is currently through integrating Positron Emission Tomography (PET) with Sodium 
Fluoride (18F–NaF) biomarkers. It has been reported that numerous observable pathologies including lumbar 
fusion, disc abnormalities and scoliosis have often been associated with increased 18F–NaF uptake. The aim of 
this study was to identify what features of lower lumbar shape most strongly correlate with 18F–NaF uptake. 
Following a principal component analysis of 23 patients who presented with lumbar pain and underwent 
18F–NaF PET-CT, it was revealed that three modes interpreted as (i) sacral tilt, (ii) vertebral disc spacing and (iii) 
spine size were the three characteristics that described 88.7% of spine shape in our study population. 18F–NaF 
was described by two modes including 18F–NaF intensity and spatial variation (anterior-inferior to posterior- 
superior). 18F–NaF was most sensitive to sacral tilt followed by vertebral disc spacing. A predictive model 
derived from that spine population was able to predict 18F–NaF ‘hot-spot’ locations with 85 � 5% accuracy and 
with 71 � 3% accuracy for the 18F–NaF magnitude. These results suggest that patients reporting with lower 
lumbar pain and who present with increased sacral tilt profiles and/or reduced disc spacing are good candidates 
for further 18F–NaF PET-CT imaging, evidenced by the high association between those shape profiles and 
18F–NaF uptake.   

1. Introduction 

Chronic patient bone pain has been associated with elevated meta
bolic activity as illustrated in the patellofemoral joint [1] and the spine 
[2]. A commonly used assessment of bone metabolic activity in the 
musculoskeletal system is integration of Positron Emission Tomography 
(PET) with Sodium Fluoride (18F–NaF) biomarkers [3]. Computed To
mography (CT) is used to reference the low spatial-resolution PET im
aging to high spatial resolution bone anatomy. Lower back pain [4,5] is 
typically experienced in the lower vertebral column, sacral and coccy
geal regions [6], and surrounding tissues [7–9]. The 18F–NaF biomarker 
has a high affinity for changes in metabolic bone activity that has been 
associated with pain receptors in bone [1], osteoarthritis [10,11] and 
site specific bone remodelling following drug treatment [12]. It does not 
identify soft tissue, hence, we are not concerned with soft tissue origins 
of metabolic activity in this study. 

Sodium fluoride (18F–NaF) is a biomarker injected into patients 
before PET scans as an imaging agent that identifies osteogenic activity 
[13]. The use of 18F–NaF exposes the patient to ionising radiation and is 
commonly used in clinics to identify and track bone metastases [14,15] 
and evaluating lesions following spontaneous osteonecrosis (bone tissue 
death) [16]. A review of the use of 18F–NaF highlighted excellent 
diagnostic performance for the detection of bone tumours, but the 
higher ionising dosage and cost were raised as issues over other mo
dalities such as planar bone scintigraphy [17]. 

There have been numerous non-oncologic uses of 18F–NaF PET-CT 
reported in the musculoskeletal system [18]. Specifically, given 
18F–NaF PET-CT has been associated with spinal geometry variations 
including joint and disc abnormalities [2], lumbar fusion and scoliosis 
[19] and spinal stenosis [20], this suggests that specific spinal shape 
profiles may be associated with 18F–NaF uptake. A common tool for 
assessing shape in engineering and biology is principal component 
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analysis and partial least squares regression to identify key variational 
features in populations and correlate these to more measurable features 
[21–26]. Previous demonstrations in spine mechanics include 3D shape 
prediction of postoperative trunks for non-invasive scoliosis surgery 
planning [27], multivariate biomechanical measurements of the spine 
during a rowing exercise [28], and bone mass variation in lumbar 
vertebrae and femoral regions [29]. 

This study aims to investigate a patient population who presented 
with lower lumbar pain and had 18F–NaF PET-CT. We firstly aim to 
identify the bone shape characteristics that describe the lower lumbar 
population using principal component analysis. Secondly, we aim to 
describe the variation of 18F–NaF uptake in the spine. Thirdly, a partial 
least squares regression statistical model is presented, correlating lower 
lumbar shape profiles with 18F–NaF uptake to investigate 18F–NaF 
sensitivity to spinal shape. The statistical model is then evaluated by 
predicting 18F–NaF uptake in patients from lower lumbar shape. 

2. Methods 

Twenty-three patients who presented with lower lumbar pain and 
had undergone 18F–NaF PET-CT at a local private hospital were used in 
this study. Ethical approval was obtained prior to the data collection by 
the local ethics advisory board. The population consisted of 12 females 

(mean age 43.3 � 16.5 years; mean Body Mass Index (BMI) 
26.9 � 7.13 kg/m2) and 11 males (mean age 46.2 � 19.4 years; mean 
BMI 27.0 � 4.89 kg/m2). The combined population showed an average 
age of 44.7 � 17.6 years and BMI of 27.0 � 6.02 kg/m2, respectively. 

CT data sets of the lower spine were used to create an anatomical 3D 
surface mesh representation of the L3, L4, L5, sacrum and coccygeal 
bones for each patient. The CT images were segmented and divided into 
separate bone objects using the segmentation software Stradwin1 and 
HyperMesh2 (geometric meshing software). The models were orientated 
according to an anatomical sacral coordinate system. The first axis was 
defined between the superior vertices of the sacrum (this is the bending- 
flexion axis). A second axis was then defined from the midpoint of the 
superior vertices to the most inferior vertex of the sacrum (this is the 
rotation axis). The third axis was the cross-product (this is the side 
bending axis). This sacral coordinate system could be defined easily in 
CT by detecting the extreme bony edges. Hence, all shape modes derived 
in this study are with respect to this coordinate system. The models were 
then created in CMISS3 (a custom mesh visualisation software) using a 
‘host mesh’ free-form deformation fitting technique [30], where a 
generic spinal vertebrae was morphed into a target vertebra using a least 
squares approximation. In order to solve this, we used an iterative 
closest point algorithm to solve the least squares minimisation where the 
objective function that is minimised is: 

FðunÞ¼
XN

d¼1
Wdjjud � zdj j

2
; (1)  

where zd are the geometric coordinates of the target points of the new 
vertebra, wd is a weighting for each control point, and ud are the land
mark points on the original generic vertebrae interpolated inside the 
host-mesh. Algorithm details and use of this method are detailed in 
Fernandez et al. [30]. Fig. 1 demonstrates how each vertebra was 
embedded in a host-mesh (grey) and deformed (red box) so as to mini
mise the difference between anatomical targets (shown as grey spheres). 
The initial vertebra (in grey) is deformed to best-match the red verte
brae. The was repeated for all 23 data sets in order to produce models 
with consistent topology that is required in order to perform principal 
component analysis. 

Fig. 2 outlines the modelling pipeline used in this study. In the 
18F–NaF population, an intensity uptake model was created to represent 
each subject’s18F–NaF concentration by mapping intensity values from 
CT scans onto each corresponding anatomical lower spine geometry. 
The 18F–NaF intensity was normalised across patients by setting the 
maximum of each patient to the intensity of the pooled 18F–NaF values 
within their bladder. The 18F–NaF PET images were standard 200 � 200 
pixel grey-scale DICOM images, which assisted with consistent filtering 
and image processing across the entire population. 18F–NaF was 
extracted from axial slice PET imaging and mapped to each subject’s 
spine model by assigning 18F–NaF intensity values to vertebral nodes 
using a closest-fit algorithm [31]. After mapping to each subject a 
Gaussian smoothing filter was applied to reduce noise. 

Principal component analysis (PCA) was performed on the anatom
ical modes and 18F–NaF uptake distribution separately. PCA is a statis
tical analysis technique using matrix decomposition to find orthogonal 
vectors (principal components), which represent characteristic varia
tions (modes) within a data set [32]. PCA was adapted from the 
open-source machine learning library (Scikit learn, http://scikit-learn. 
org/stable/) and applied to the 23 patient data sets. PCA modes were 
identified and associated with anatomical descriptions in descending 
order of importance and reconstructed for visualisation in the custom 
Physiome visualisation tool CMGUI (http://physiomeproject.org/softw 

Fig. 1. Initial host-mesh (grey box) is deformed to the red box to minimise the 
distance between landmark points (grey spheres) and target points (green 
cones). As a result, the generic vertebrae (grey) is deformed to the red verte
brae. The actual patient vertebra is shown in gold. 

1 http://mi.eng.cam.ac.uk/~rwp/stradwin/.  
2 www.altairhyperworks.com.  
3 www.cmiss.org. 
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are/opencmiss/cmgui). 
Partial Least Squares Regression (PLSR) [33] was used to establish a 

correlation between anatomical spinal shape and 18F–NaF uptake. PLSR 
was used to model the relationships between PCA modes of shape and 
PCA modes of 18F–NaF uptake. The two fundamental equations in PLSR 
are the predictor matrix (X) and the response matrix (Y) given by 

XNM ¼ TNL PT
ML þ ENM ; (2)  

and 

YNP¼ UNL QT
PL þ FNP; (3)  

where N is the number of data sets (23 in this study), M is the number of 
predictor variables (shape PCA modes), P is the number of response 
variables (18F–NaF PCA modes), and L is the number of principal com
ponents. T and U are the projection matrices (also known as scores), and 
P and Q are transposed orthogonal loading matrices (where the rows are 
created from eigenvectors or principal components), and E and F are the 

error or residual terms. The score vectors are related using a linear 
function 

U¼ f ðTÞ þ H; (4)  

where H is a vector of residuals. The PLSR model was evaluated using a 
‘leave-one-out’ method by excluding the current patient from the 
training model and using it for testing, then swapping to the next patient 
and repeating the process. To identify sensitivity between spinal shape 
and 18F–NaF uptake, modes of spine shape variation were perturbed by 
�2 standard deviations to observe the effect on 18F–NaF uptake intensity 
and spatial change. 

3. Results 

PCA shape modes revealed the main characteristic shape variations 
found within the lower lumbar spine, and their significance can by 
interpreted as (i) sacral tilt (61.7%), (ii) vertebral disc spacing (15.7%), 

Fig. 2. Framework diagram shows: (left) extracting patient geometry information from sagittal CT scans, then using free-form deformation to create 3D node models 
used for PCA of shape; (right) extraction of 18F–NaF from axial slice PET-CT, mapping the intensity values onto each patient’s respective 3D geometry for PCA of 
18F–NaF uptake. PLSR for correlations between 18F–NaF uptake and lower lumbar shape. 
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and (iii) scaling of size (11.3%) as seen in Fig. 3. Only the top three 
modes of variation exhibited anatomical definable characteristics of 
shape accounting for 88.7% of the variation in lower lumbar spine shape 
(Fig. 4). The PCA modes of variation for 18F–NaF uptake (Fig. 5) were 
observed as (i) 18F–NaF overall intensity (64.3%), and (ii) an anterior- 
inferior to posterior-superior intensity shift (7.5%). Only these two 
variations were distinguishable in terms of anatomy. 

PLSR predicted 18F–NaF uptake intensity with a 71 � 3% accuracy 
(averaged across all elements), and 85 � 5% for the pattern of 18F–NaF 
uptake. Qualitative evaluation revealed that predicted 18F–NaF spatial 
variation and pattern was modelled better than intensity values using 
PLSR, with magnitudes of peak 18F–NaF uptake often over or under 
predicted. Sensitivity analysis using the PLSR model showed that a 10% 
increase of sacral tilt exhibited a 6.5% increase in 18F–NaF intensity, a 
10% increase in vertebral disc spacing resulted in a 5.1% increase in 
18F–NaF intensity, and a 10% increase in spinal size resulted in a 1.7% 
increase in 18F–NaF intensity. 

A further sensitivity analysis on the spatial variation of 18F–NaF 
uptake in response to spinal shape change was investigated. Fig. 6 
highlights the effect of perturbing the PLSR model by � 2 S. D along each 
mode to explore the effect of shape on 18F–NaF intensity variation. The 
first vertical line represents the first mode, and then follows a clockwise 
direction of increasing modes. The results show that the predicted 
18F–NaF for �2 S. D of the first shape mode (which was interpreted as 
sacral tilt) produced the strongest 18F–NaF intensity variation 

throughout the lower lumbar spine. The second most significant mode 
(interpreted as vertebral disc spacing) produced a predicted 18F–NaF 
response pattern that moved posteriorly and anteriorly. Perturbation of 
the third mode of shape (interpreted as spine size) exhibited a subtle 
superior and inferior shift of 18F–NaF along the length of the spine. For 
completeness, the 4th shape mode was modelled and showed a subtle 
medial-lateral spine variation producing subtle variations of 18F–NaF 
intensity primarily in the sacrum. 

The PLSR model was evaluated for 18F–NaF response given lower 
lumbar spinal shape as a clinical predictor. Fig. 7, shows three examples 
of predicted 18F–NaF uptake and their respective ‘real’ 18F–NaF uptake 
from PET-CT. Fig. 7a, shows predicted 18F–NaF intensity concentrated 
around the L5 to sacrum (anterior sacral promontory) area. There is also 
18F–NaF uptake on the anterior-inferior L5 body, superior L4 spinous 
process, and the inferior L3 spinous process, which the prediction model 
captures well but with over-prediction of 18F–NaF magnitude. Fig. 7b 

Fig. 3. Principal component modes 1 to 3 showing mode of variation from the 
mean (blue) to the ‘þ2’ standard deviation (red). Mode 1 represents sacral tilt; 
mode 2 is vertebral spacing; mode 3 represented scaling of size. 

Fig. 4. Line graph of the percentage of total variation for each principal 
component modes 1 to 10 for whole shape population (23 patients). 

Fig. 5. PCA of 18F–NaF distribution around the centre mean. Left to Right is �
2sd for mode 1 and Top to Bottom is � 2sd for mode 2. Red represents high 
18F–NaF intensity distribution and blue being no/little 18F–NaF intensity. 
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exhibits a patient with 18F–NaF uptake concentrated primarily on the 
posterior sacral promontory and posterior L5 centrum region, and the 
PLSR prediction shows a strongly correlated pattern. The patient in 
Fig. 7c showed 18F–NaF uptake in the L5 vertebral region and the PLSR 
model predicted this site as well but with lower intensity. However, the 
PLSR model also predicted 18F–NaF uptake on the L3 inferior articular 
process, which was not observed in the patient. Quantitatively, we found 
PLSR predicted 18F–NaF uptake with an average accuracy of 71 � 3% of 
the actual 18F–NaF uptake intensity, and 85 � 5% of the 18F–NaF uptake 
pattern, across 23 spines using a ‘leave-one-out’ analysis across all 
spines. 

4. Discussion 

The aims of this study were to identify the features of shape that 
describe the lower lumbar population, describe the variation of 18F–NaF 
uptake across the spine, develop a partial least squares regression that 
relates lower lumbar shape to 18F–NaF uptake, use that model to identify 
what features of shape are most correlated to 18F–NaF uptake, and to 
predict 18F–NaF uptake from knowing lower lumbar shape. This may 
have useful clinical implications by assisting to identify patients at risk 
of bone degeneration using simple planar imaging of patients who 
present with lower back pain. Following a PCA of 23 patients it was 
revealed that modes interpreted as sacral tilt, vertebral disc spacing and 
spine size were the three characteristics that described spine shape ac
counting for 88.7% of the variation in our study population. 18F–NaF 
was described by two modes including 18F–NaF intensity and spatial 
variation (anterior-inferior to posterior-superior). 18F–NaF was most 
sensitive to sacral tilt followed by vertebral disc spacing. A predictive 
model derived from that spine population was able to predict the pattern 
of 18F–NaF ‘hot-spots’ with 85 � 5% accuracy but was less able to 

predict the intensity of 18F–NaF uptake (71 � 3%). 
This study used PCA to characterise shape variations in the lower 

lumbar and PLSR to correlate those lower lumbar shape variations with 
18F–NaF uptake (a surrogate for metabolic bone activity). The three 
main principal components (shape characteristics) found in this study 
for the lower lumbar were interpreted as sacral tilt (also termed lumbar 
lordosis), vertebral disc spacing, and spinal size, explaining 88.7% of 
spinal shape variation. No PCA models confined to the lower lumbar 
spine have been reported in the literature to date, however, a previous 
PCA model of spine reported capturing 90% of shape variation using 
four modes for the whole spine in scoliotic patients [34]. In that study 
they reconstructed the geometries and correlated the modes to patient 
growth (size), double thoraco-lumbar curve, thoracic curve, and lumbar 
lordosis, in that order. A difference between the order of modes in that 
study and the present model is that they investigated the complete spine 
in a pathologic group (scoliosis). Hence, size is likely the largest mode 
followed by scoliotic variations seen in both the thoracic and lumbar 
regions. Their shape modes were also confounded between the thorax 
and lower lumbar, hence, the double thoraco-lumbar characterisation. 
Compared to our study, we analysed the lower lumbar in a mature aged 
size-limited population, hence, sacral tilt was the largest variation 
identified (lumbar lordosis), which was also a shape mode reported by 
Boisvert, Pennec, Labelle, Cheriet and Ayache [34]. Both studies found 
that 88–90% of shape variations could be captured by 3–4 modes. 

PCA has previously been adopted to visualise and classify PET im
aging in pathologic data. Thireou, Strauss, Dimitrakopoulou-Strauss, 
Kontaxakis, Pavlopoulos and Santos [35] reported the PCA modes 
were correlated with anatomical accumulation sites of radioactive bio
markers. In the current study we used a similar technique to characterise 
the spatial migration and affinity to bone of 18F–NaF. The major mode of 
18F–NaF variation identified across our study population was uptake 

Fig. 6. Effects of PLSR predicted 18F–NaF uptake from perturbing PCA shape modes 1 (sacral tilt), 2 (vertebral disc spacing), 3 (spinal size), and 4 (unidentifiable 
anatomical shape characteristic). Red represents high 18F–NaF intensity distribution and blue being no/little 18F–NaF intensity. 
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intensity, characterised by the presence (all red) or the lack (all blue) of 
18F–NaF (Fig. 6). This was consistent with the first mode reported by 
Thireou, Strauss, Dimitrakopoulou-Strauss, Kontaxakis, Pavlopoulos 
and Santos [35] who reported the primary variation as all structures 
present with a biomarker. The second mode of 18F–NaF variation iden
tified across our study population was a spatial translation from the 
superior-posterior lumbar region to the inferior-anterior sacral region. 
This mode aligns with the two main postures and loading patterns 

observed in the lumbar spine. Patient anterior sacral tilt (lordosis) cor
responds with loading along the posterior sacrum and anterior columns 
of L3 and L4, where 18F–NaF was observed, and posterior sacral tilt 
corresponds with loading along the anterior sacrum and L5, where 
18F–NaF is observed. 

PLSR revealed the relationship between spinal shape variation and 
location of 18F–NaF uptake. The 18F–NaF intensity was most sensitive to 
sacral tilt, which in extreme anterior pelvic tilt is classified as hyper- 
lordosis causing extreme compression in the sacral region, a precursor 
to bone degeneration and lower back pain [36]. Vertebral disc spacing 
was the second most influential factor and corresponded well to 
degeneration of vertebral end plates, spinal processes and likely for
mation of osteophytes [37]. Spinal size was observed to lead to a 
proximal distal shift in 18F–NaF spatial uptake but less influential on 
18F–NaF uptake. 

Using the PLSR as a patient 18F–NaF uptake predictor revealed a 
prediction accuracy of 71 � 3%, which was primarily due to good pre
diction of spatial 18F–NaF uptake sites. Patient A (Fig. 7) displayed 
18F–NaF uptake at regions associated with small vertebral disc spacing, 
where the disc is highly compressed, and one site along the spinal pro
cesses. Patient B (Fig. 7) presented 18F–NaF uptake concentrated around 
the posterior L5 to sacral region, consistent with their anterior sacral tilt. 
Patient C (Fig. 7) also exhibited 18F–NaF uptake in the L5 vertebral body 
with additional concentrations on the inferior posterior L4 body. This 
was consistent with their moderate posterior sacral tilt and a compressed 
L5 – sacrum disc spacing. Our PLSR predictions of 18F–NaF uptake were 
accurate to 71 � 3% of the actual 18F–NaF uptake. The errors were likely 
due to being unable to predict some of the peak magnitudes of 18F–NaF. 
This is a likely limitation of linear PLSR and may require a nonlinear 
multivariate regression method, such as quadratic PLSR. 

Partial Least Squares Regression (PLSR) is ideally suited to the pre
sent study as it is a multivariate linear predictor that has been reported 
with much success in the biology space including using femoral shape 
variation to rapidly reconstruct femurs [25], efficient prediction of 
muscle mechanics using muscle length and activation level [26], and 
more recently to predict a muscle volume using personalised metrics 
including leg length, sex and shank girth [38]. It is widely available in 
many open-source statistical toolkits including Scikit-learn (https://sci 
kit-learn.org/stable/) and Tensorflow (https://www.tensorflow.org/) 
and works well when the variation is close to linear. Linear PLSR was 
reported as the best predictor of muscle volume in the recent study by 
Yeung et al. [38] over other machine learning techniques including 
support vector machine and higher order PLSR methods (that often 
overfit data). 

There are limitations within this study that should be considered 
when interpreting the findings. Firstly, this study uses 18F–NaF as a 
surrogate for lower lumbar bone degeneration and increased bone 
metabolic activity. Hence, patients with similar spinal shape profiles 
that have soft tissue related back pain are excluded. Secondly, PCA 
works well with populations that are consistent in shape variations, 
hence, people presenting with scoliosis and other pathologic bone de
formities would not work as well with PCA unless they were further 
classified into consistent sub-categories. For this study, we removed 
patients who presented with scoliosis and sacralisation in order to avoid 
the associated limitations of PCA. Thirdly, we were limited to only 23 
patients (after pathologies were removed) but it is challenging to obtain 
ethics to perform 18F–NaF PET-CT to increase the population and we rely 
on historical data sets. The modelling tools presented in this study, spine 
population models, and 18F–NaF uptake data are being made available 
for orthopaedic evaluation in the Musculoskeletal Atlas Project (MAP) 
Client (https://map-client.readthedocs.io/en/latest/), which is an open- 
source repository for use by the scientific and clinical communities [39] 
with the aim of increasing the data sets available to the scientific com
munity. Furthermore, previous PCA has revealed that 25–30 samples is 
sufficient for PCA to converge [40], hence, the 23 models used for shape 
analysis in this study are likely close to convergence but further 

Fig. 7. PLSR predicted 18F–NaF distribution versus actual 18F–NaF uptake 
pattern for patients A, B and C. Red represents high 18F–NaF intensity distri
bution and blue being no/little 18F–NaF intensity. 
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investigation would be required. Fourth, patients used within this study 
had reached maturity, and are no longer in developmental stages, which 
can confound the presentation of high bone metabolism and 18F–NaF 
uptake [41,42]. Fifth, the nature of the free-form deformation technique 
used in the study smooths (and filters) minor lesions and osteophytes 
that might explain bone degeneration and associated areas of back pain 
[43]. Hence, minor anatomical details may have been overlooked, but 
does not detract from the main shape characteristics found to correlate 
with 18F–NaF uptake and its distribution. Finally, despite the source of 
18F–NaF PET-CT data coming from the same facility, different operators, 
historical time points, and the general low resolution of PET may 
contribute to noisy data. However, applied Gaussian smoothing, nearest 
anatomical feature mapping, and 18F–NaF uptake was normalised to 
intensity identified in the bladder (where 18F–NaF accumulates). Hence, 
the general study conclusions concerning 18F–NaF spatial variation and 
anatomical correlation are less sensitive to these sources of error. 

This study has revealed that the lower lumbar can be described by 
three main shape modes interpreted as (i) sacral tilt, (ii) vertebral disc 
spacing and (iii) spine size, which describe 88.7% of spine shape in our 
lower lumbar population. 18F–NaF was described by two modes of 
variation including 18F–NaF intensity and spatial variation (anterior- 
inferior to posterior-superior). 18F–NaF was most sensitive to sacral tilt 
followed by vertebral disc spacing. Using a partial least squares 
regression we were able to predict 18F–NaF ‘hot-spot’ locations with 
85 � 5% accuracy and with 71 � 3% accuracy for the 18F–NaF magni
tude. These findings suggest that patients reporting with lower lumbar 
pain and who present with increased sacral tilt profiles and/or reduced 
disc spacing are good candidates for further 18F–NaF PET-CT imaging, 
evidenced by the high association between those shape profiles and 
18F–NaF uptake. 

This study has revealed that the lower lumbar can be described by 
three main shape modes interpreted as sacral tilt, vertebral disc spacing 
and spine size, which describe 88.7% of spine shape in our lower lumbar 
population. 18F–NaF uptake was described by two modes of variation 
including 18F–NaF intensity and spatial variation (anterior-inferior to 
posterior-superior). 18F–NaF was most sensitive to sacral tilt followed by 
vertebral disc spacing. Using a partial least squares regression we were 
able to predict 18F–NaF ‘hot-spot’ locations with 85 � 5% accuracy and 
with 71 � 3% accuracy for the 18F–NaF magnitude. These findings 
suggest that patients reporting with lower lumbar pain and who present 
with increased sacral tilt profiles and/or reduced disc spacing are good 
candidates for further 18F–NaF PET-CT imaging, evidenced by the high 
association between those shape profiles and 18F–NaF uptake. 
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